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o Central Path Algorithms.
@ Primal Dual Methods.

@ Solving the Linear System.

The material it a mix of [Murty, 2009] and [Nocedal and Wright,
2006]
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Analytic Center 3

Let I be a convext polytope
I'={z:v=A4x—-b> 0}, (1)

where v is the vector of slack variables associated with the
inequality constraints.

Analytic Center

The analytic center T is defined as the point in T" which maximizes
the product of the slack variables assosiated with the inequality
constraints, and A is m X n.
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Analytic Center 4
This is equivalent of

max

Z log v;
subject to

=1

v=Axr—b>0
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Central Path 5

Finding a sequence of interior feasible solutions along a path called
the central path, converging to the analytic center of the optimum
face of the LP is the building block of some algorithms.

Consider

min 2(z) =Tz B
subjectto Az =b,2>0
Let 1 > 0 and consider
min 2(z) = o — Zlog xj 3)

subject to Az =b,(z > 0)
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Central Path 6

This problem (3) is known as the logarithmic barrier problem. By
penalizing variables entering the negative region we can relax
non-negativity.

youtu.be/MsgpS15JRbI

It can be shown that it has a unique optimum for each p > 0.
Letting y denote the vector of dual variables of Lagrange multipliers
associated with the equality constraints of (3), the optimality
conditions for a feasible solution () is that there exists a y(u)
satisfying the KKT conditions for (3).

Ax=0»
—ATy —s =" (4)
Xs = pe
55> 0 s

where X = dmiim“imi i


youtu.be/MsgpSl5JRbI

Central Path 7

It can be shown that the trajectory traced by (z(u),y(u), s(u))
exists and is unique for all p if the original problem (2) and its dual
have interior feasible solutions.

This trajectory is called the primal-dual central path. Every point
x(u) of the central path is the analytic center of the intersection of
K with the objective plane through that point.
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The Affine Scaling Method 8

Consider the standard problem (2) and let 2" be an interior feasible
solution. The method creates an ellipsoid in R™ around " by
replacing = > 0 into

2
n R
x e B, = :L.:(Z.% 2%) <1 (5)
T?

i=1 g

We then obtain the problem
min 2(z) =clx
subject to Az =b

2
n r
Ty — X
<1
(z = )

i=1 g

(6)
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The Affine Scaling Method 9

The intersection of the ellipsoid with the constraints Az = b is an
ellipsoid F,. with center z,..

The optimum of this problem can be computed analytically.
An ellipsoid in R™ is the set of

E={z:(z- 2Dz — %) < P}, (7)

where D is a positive finite matrix.
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The Affine Scaling Method

Consider the problem
min 2(z) =l
subject to Az =0 (8)
(z —2%)"D(a - 2°) < p?
For the special case where the ellipsoid is a sphere, D = I, we get
the solution

z* =2+ p(—c)/||el| (9)
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The Affine Scaling Method
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The Affine Scaling Method

Let 20 be a given point and consider the problem
min 2(z) =clz
subjectto Az =10 (10)
(& —2%)T(X°) (& —2®) < p?

which can be transformed into the sphere problem (8) by

yl =el 4 (z — 29T (X% (11)
which gives us the expression for the point z as

2= (y— )" X" = 4" X° (12)
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The Affine Scaling Method

This gives us

min 2(z) =l
. T 2 (13)
subjectto (y—e) (y—e)<p

with the optimal solution

* _ .0 _ p(XO)ch
- e
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The Affine Scaling Method

Now consider the problem

min 2(x) =clx

subject to Ax =b (14)

(& —a”)(z —2®) < p?

where A is a matrix of order m x n and full row rank m. And ¥ is
a point in the space H = {z : Az = b}. Denoting the ellipsoid B

we know that the center 20 of B is in H and that G N B is another
ball which has center 2° and radius p and is totally contained in H.
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The Affine Scaling Method

Since A is of full rank, the orthogonal projection of ¢! into the
subspace {2 : Az = 0} is Pc! where P =1 — AT(AAT)"'Ais the
projection matrix.
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The Affine Scaling Method

Now consider the problem

min 2(z) =clz

subjectto Az =10 (15)

(2 — 2%)7(X%) (2 - 2°) < p?

where A is a matrix of order m x n and full row rank m. And 29 is
a point in the space H = {z : Az = b}.

Solving (15) is equivalent to minimizing cPx on H N B and using
the solution to the sphere problem (9) we get

PcT
© = PP (16)
C
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The Affine Scaling Method

Using the transformation of variables previously defined in(11), the
problem becomes

min 2(z) = ¢X  + constant
subject to AX%y =10 (17)
(y—e)(y—e) <p?

We know that the optimal y is given by

o X0
Y PP x0T

where P, is the projection matrix
Py=1-XAT(A(X")?AT)"1AX"

. . . II LINKOPINGS
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The Affine Scaling Method

Using (12) we get the optimal point x

S]]
Il
P

Py X0cT
0~ XO 0
p— — —————————— p—
Y (e pIIPoXOCTH)

P\ P x0cT|
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Optimality Conditions

If 2% = 0 for atleast one j = 1,...,n, then 27 is an optimum
solution of (2).

If the tentative dual slack vector s = ¢! — ATy" < 0 the objective
function is unbounded in the problem (2).

If either of the above is satisfied the algorithm terminates. Else a
step is taken in the direction given by d" = 1" — 2.
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Step Length

The maximum step length 6, is the maximum value that keeps
xi +0d; >0, Vj.

It can be verified that that is
) - XTg"
Gr:mm{j, | . T” :8§>0}
Ljs;

g ="+ a6,d",0<a<1.

Typically oo = 0.95
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Newton's Method

Newton's method is a method for solving non-linear equations.
in this direction.

2"t =" —(Vf(a") " f(a")

| the Jacobian is non-singular, the method takes a step of length 1

LINKOPINGS
IIQ" UNIVERSITET
LRI = = T DA



Primal-Dual Path Following Methods

The central path-following primal-dual methods are some of the
most popular methods.

min 'z
subjectto Az =10 (18)
x>0
And its dual
max by
subject to ATy +s=c¢ (19)
z,s >0

The complementary slackness conditions are xjs; = 0.
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Optimality Conditions

Solving the LP is equivalent to finding a solution (z,s) > 0 to the
following system of (2n + m) equations with (2n + m) unknown, if
the constraint maxtrix A is m x n.

ATy +s—c
F(x,y,s) = Az —b =0 (20)
XSe

which is a non-linear system because of the last equation.
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The Central Path

The central path is parametrized using 1 > 0. For each p > 0 the
point (zH,yH, s*) € C satisfies (z#,s*) > 0 and
ATyt 4 st =T
Azt =10

Boh o
sy =uVj=1,..,n

If = 0 this defines the optimality conditions.
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Optimality Conditions

Following the central path while decreasing p to 0 implies that all
complementary products x;s; are equal. Thus y is a measure of

closeness to optimality.
However, two difficulties arise

e Finding a starting point on C with all z;s; equal.
e C is a non-linear curve.
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Optimality Conditions

We introduce the measure of deviation from the central path C as
| X Se — pe]
1

Usually the 2-norm is used with a parameter 6
| X Se — pe| < p,

where 0 < 6 < 1, where 0.5 is a common value. By keeping all
iterates within this kind of neighbourhood, path-following methods
reduce all z;s; to 0 at about the same rate.
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Step

Moving from the current point, we may only take a small step.
Thus the non-negativity constraints (z,s) > 0 can be ignored when
computing this step. To find the direction, we solve

0 AT I Ax 0
A 0 O Ay | = 0 (21)
S 0 X As —XSe+ope

where ¢ = 1 is the centering direction, which will take us towards
the point (z#, y*, s*) € C, but may produce a small improvement
in objective value. Using 0 = 1 is a pure Newton step. Algorithms
usually choose a trade off in the interval (0,1).
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Starting Point

min E.CE T (22)

subjectto Ax =1b

. 1 7
min =S5 S
2 (23)

subject to ATy +s=c¢

The solution of these problems can be written as

z=AT(AAT)"1p
7= (AAT) 1 Ac
s=c—Aly
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Starting Point

We must modify the solutions to avoid non-negative values of Z, 5.

& = Z 4+ max(—3/2min z;,0)e+

§ =5+ max(—3/2min s;,0)e

We then scalars to ensure the components are not too close to zero

20=2 1&6
2el's

=3 1§T—je
2eTs

The computational cost of finding this starting point is about the
same as one step of the primal-dual method.
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Solving the Linear System

Most computational time is taken up solving the linear system (21).
THe matrix in these systems are usually large and sparse, and the
structure allows us to reformulate them as systems with more
compact symmetric coefficient matrices which are easier to factor
than the original one.

0 AT T Ax —Te
A 0 O Ay | =1 —n (24)
S 0 X As —Tzs

Since x and s are strictly positive, the diagonal matrices X and S
are non-singular. We can eliminate As by XAs = —r,s — SAx
and by multiplying with —X ! obtain

As=—X"tr,s — X 'SAx
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Solving the Linear System

Consider the third equation
SAz + XAs = —ry,
Add —X ! times the third equation to the first equation.

X1SAz + X 1X As = —X " 1ry,

=1
0 AT T Az —7
A 0 0 Ay | = —Tp
X1s 0o -1) \As X gy
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Solving the Linear System

(_?4—2 I%T ) (2;5) _ (—rc -I-_i(b_1rm> (25)

where D = §~1/2X1/2_ This is known as the agumented system.
We can go further by eliminating Az and adding AD? times the
first equation to the second in order to cancel out the term AAx.

—AD?D™% AD?AT\ (Az\ _ (—AD?r.+ AD?X " ry,
A 0 Ay B —Tp

using the definition D = §—1/2X1/2
—A AD?AT\ (Az\  [(—AXS7lr.+ AS7lrg
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Solving the Linear System

Adding equation one to equation two yields

(—A AD2AT> (A:c) _( —AXS Vrg+ AS r,, )

0 AD?AT ) \Ay) ~ \—r,— AXS lr.+ AS lr,,

D*ATAy = —r, — AXS 're + AS Iry,
As = —r.+ AT Ay (26)
Az =—-S"1r,, — XS 1As

where the expressions for As and Az are obtained from the original
system (24).
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Solving the Linear System

Most implementations of primal dual interior point solvers are based
on formulations like (26), which are called the normal equations.

General purpose Choleskey software can be applied to AD?A” but

modifications are needed because the matrix may be ill-conditioned
or singular.
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Complexity

All path-following methods have been shown to be polynomial time
algorithms (where simplex is worst case exponential). Each step

requires a full matrix inversion, a rather expensive task for a large
scale problem. However the number of steps are smaller in interior
point methods than in the simplex method.
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Advantages and Disadvantages

Compared to the simplex method

+ Better worst case complexity.
+ Easier to program.

- Cannot take advantage of warm start information as good.
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