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Analytic Center 3

Let Γ be a convext polytope

Γ = {x : v = Ax− b ≥ 0} , (1)

where v is the vector of slack variables associated with the
inequality constraints.

Analytic Center

The analytic center Γ is de�ned as the point in Γ which maximizes
the product of the slack variables assosiated with the inequality
constraints, and A is m× n.
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Analytic Center 4

This is equivalent of

max

m∑
i=1

log vi

subject to v = Ax− b ≥ 0
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Central Path 5

Finding a sequence of interior feasible solutions along a path called
the central path, converging to the analytic center of the optimum
face of the LP is the building block of some algorithms.
Consider

min z(x) = cTx

subject to Ax = b, x ≥ 0
(2)

Let µ > 0 and consider

min z(x) = cTx− µ

 n∑
j=1

log xj


subject to Ax = b, (x ≥ 0)

(3)
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Central Path 6

This problem (3) is known as the logarithmic barrier problem. By
penalizing variables entering the negative region we can relax
non-negativity.

youtu.be/MsgpSl5JRbI

It can be shown that it has a unique optimum for each µ > 0.
Letting y denote the vector of dual variables of Lagrange multipliers
associated with the equality constraints of (3), the optimality
conditions for a feasible solution x(µ) is that there exists a y(µ)
satisfying the KKT conditions for (3).

Ax = b

−AT y − s = −cT

Xs = µe

x, s > 0

(4)

where X = diag(x1, ..., xn).
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Central Path 7

It can be shown that the trajectory traced by (x(µ), y(µ), s(µ))
exists and is unique for all µ if the original problem (2) and its dual
have interior feasible solutions.

This trajectory is called the primal-dual central path. Every point
x(µ) of the central path is the analytic center of the intersection of
K with the objective plane through that point.
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The A�ne Scaling Method 8

Consider the standard problem (2) and let xr be an interior feasible
solution. The method creates an ellipsoid in Rn around xr by
replacing x ≥ 0 into

x ∈ Er =

x :

(
n∑
i=1

xi − xri
x2i

)2

≤ 1

 (5)

We then obtain the problem

min z(x) = cTx

subject to Ax = b(
n∑
i=1

xi − xri
x2i

)2

≤ 1

(6)
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The A�ne Scaling Method 9

The intersection of the ellipsoid with the constraints Ax = b is an
ellipsoid Ēr with center xr.

The optimum of this problem can be computed analytically.

An ellipsoid in Rn is the set of

E =
{
x : (x− x0)TD(x− x0) ≤ ρ2

}
, (7)

where D is a positive �nite matrix.
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The A�ne Scaling Method 10

Consider the problem

min z(x) = cTx

subject to Ax = b

(x− x0)TD(x− x0) ≤ ρ2
(8)

For the special case where the ellipsoid is a sphere, D = I, we get
the solution

x? = x0 + ρ(−cT )/‖c‖ (9)
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The A�ne Scaling Method 11
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The A�ne Scaling Method 12

Let x0 be a given point and consider the problem

min z(x) = cTx

subject to Ax = b

(x− x0)T (X0)−2(x− x0) ≤ ρ2
(10)

which can be transformed into the sphere problem (8) by

yT = eT + (x− x0)T (X0)−1 (11)

which gives us the expression for the point x as

xT = (y − e)TX0(x0)T = yTX0 (12)
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The A�ne Scaling Method 13

This gives us

min z(x) = cTx

subject to (y − e)T (y − e) ≤ ρ2
(13)

with the optimal solution

x? = x0 − ρ(X0)2cT

‖X0cT ‖
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The A�ne Scaling Method 14

Now consider the problem

min z(x) = cTx

subject to Ax = b

(x− x0)T (x− x0) ≤ ρ2
(14)

where A is a matrix of order m× n and full row rank m. And x0 is
a point in the space H = {x : Ax = b}. Denoting the ellipsoid B
we know that the center x0 of B is in H and that G∩B is another
ball which has center x0 and radius ρ and is totally contained in H.
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The A�ne Scaling Method 15

Since A is of full rank, the orthogonal projection of cT into the
subspace {x : Ax = 0} is PcT where P = I −AT (AAT )−1A is the
projection matrix.
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The A�ne Scaling Method 16

Now consider the problem

min z(x) = cTx

subject to Ax = b

(x− x0)T (X0)−2(x− x0) ≤ ρ2
(15)

where A is a matrix of order m× n and full row rank m. And x0 is
a point in the space H = {x : Ax = b}.
Solving (15) is equivalent to minimizing cPx on H ∩B and using
the solution to the sphere problem (9) we get

x0 − ρ PcT

‖PcT ‖
(16)
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The A�ne Scaling Method 17

Using the transformation of variables previously de�ned in(11), the
problem becomes

min z(x) = cX0y + constant

subject to AX0y = b

(y − e)T (y − e) ≤ ρ2
(17)

We know that the optimal y is given by

ȳ = e− ρ P0X
0cT

‖P0X0cT ‖

where P0 is the projection matrix

P0 = I −X0AT (A(X0)2AT )−1AX0

is the projection matrix.
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The A�ne Scaling Method 18

Using (12) we get the optimal point x

x̄ = X0ȳ = X0

(
e− ρ P0X

0cT

‖P0X0cT ‖

)
=

x0 − ρ
(
e− ρ P0X

0cT

‖P0X0cT ‖

)
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Optimality Conditions 19

If x̄rj = 0 for atleast one j = 1, ..., n, then x̄rj is an optimum
solution of (2).

If the tentative dual slack vector sr = cT −AT yr ≤ 0 the objective
function is unbounded in the problem (2).

If either of the above is satis�ed the algorithm terminates. Else a
step is taken in the direction given by dr = x̄r − xr.
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Step Length 20

The maximum step length θr is the maximum value that keeps

xrj + θdrj ≥ 0, ∀j.

It can be veri�ed that that is

θr = min

{
j,
‖Xrsr‖
xrjs

r
j

: srj > 0

}

xr+1 = xr + αθrd
r, 0 < α < 1.

Typically α = 0.95
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Newton's Method 21

Newton's method is a method for solving non-linear equations.

xr+1 = xr − (∇f(xr))−1f(xr)

I the Jacobian is non-singular, the method takes a step of length 1
in this direction.
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Primal-Dual Path Following Methods 22

The central path-following primal-dual methods are some of the
most popular methods.

min cTx

subject to Ax = b

x ≥ 0

(18)

And its dual
max bT y

subject to AT y + s = c

x, s ≥ 0

(19)

The complementary slackness conditions are xjsj = 0.
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Optimality Conditions 23

Solving the LP is equivalent to �nding a solution (x, s) ≥ 0 to the
following system of (2n+m) equations with (2n+m) unknown, if
the constraint maxtrix A is m× n.

F (x, y, s) =

 AT y + s− c
Ax− b
XSe

 = 0 (20)

which is a non-linear system because of the last equation.
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The Central Path 24

The central path is parametrized using µ > 0. For each µ > 0 the
point (xµ, yµ, sµ) ∈ C satis�es (xµ, sµ) > 0 and

AT yµ + sµ = cT

Axµ = b

xµj s
µ
j = µ, ∀j = 1, ..., n

If µ = 0 this de�nes the optimality conditions.
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Optimality Conditions 25

Following the central path while decreasing µ to 0 implies that all
complementary products xjsj are equal. Thus µ is a measure of
closeness to optimality.

However, two di�culties arise

Finding a starting point on C with all xjsj equal.

C is a non-linear curve.
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Optimality Conditions 26

We introduce the measure of deviation from the central path C as

‖XSe− µe‖
µ

.

Usually the 2-norm is used with a parameter θ

‖XSe− µe‖ ≤ µ,

where 0 < θ < 1, where 0.5 is a common value. By keeping all
iterates within this kind of neighbourhood, path-following methods
reduce all xjsj to 0 at about the same rate.
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Step 27

Moving from the current point, we may only take a small step.
Thus the non-negativity constraints (x, s) ≥ 0 can be ignored when
computing this step. To �nd the direction, we solve0 AT I

A 0 0
S 0 X

∆x
∆y
∆s

 =

 0
0

−XSe+ σµe

 (21)

where σ = 1 is the centering direction, which will take us towards
the point (xµ, yµ, sµ) ∈ C, but may produce a small improvement
in objective value. Using σ = 1 is a pure Newton step. Algorithms
usually choose a trade o� in the interval (0, 1).
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Starting Point 28

min
1

2
xTx

subject to Ax = b
(22)

min
1

2
sT s

subject to AT y + s = c
(23)

The solution of these problems can be written as

x̄ = AT (AAT )−1b

ȳ = (AAT )−1Ac

s̄ = c−AT ȳ
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Starting Point 29

We must modify the solutions to avoid non-negative values of x̄, s̄.

x̂ = x̄+ max(−3/2 min x̄i, 0)e+

ŝ = s̄+ max(−3/2 min s̄i, 0)e

We then scalars to ensure the components are not too close to zero

x0 = x̂+
1

2

x̂T ŝ

eT x̂
e

s0 = ŝ+
1

2

ŝT x̂

eT x̂
e

The computational cost of �nding this starting point is about the
same as one step of the primal-dual method.
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Solving the Linear System 30

Most computational time is taken up solving the linear system (21).
THe matrix in these systems are usually large and sparse, and the
structure allows us to reformulate them as systems with more
compact symmetric coe�cient matrices which are easier to factor
than the original one.0 AT I

A 0 0
S 0 X

∆x
∆y
∆s

 =

−rc−rb
−rxs

 (24)

Since x and s are strictly positive, the diagonal matrices X and S
are non-singular. We can eliminate ∆s by X∆s = −rxs − S∆x
and by multiplying with −X−1 obtain

∆s = −X−1rxs −X−1S∆x
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Solving the Linear System 31

Consider the third equation

S∆x+X∆s = −rxs

Add −X−1 times the third equation to the �rst equation.

X−1S∆x+X−1X︸ ︷︷ ︸
=I

∆s = −X−1rxs

 0 AT I
A 0 0

X−1S 0 −I

∆x
∆y
∆s

 =

 −rc
−rb

X−1rxs


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Solving the Linear System 32

(
−D−2 AT

A 0

)(
∆x
∆y

)
=

(
−rc +X−1rxs

−rb

)
(25)

where D = S−1/2X1/2. This is known as the agumented system.
We can go further by eliminating ∆x and adding AD2 times the
�rst equation to the second in order to cancel out the term A∆x.(
−AD2D−2 AD2AT

A 0

)(
∆x
∆y

)
=

(
−AD2rc +AD2X−1rxs

−rb

)
using the de�nition D = S−1/2X1/2(

−A AD2AT

A 0

)(
∆x
∆y

)
=

(
−AXS−1rc +AS−1rxs

−rb

)
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Solving the Linear System 33

Adding equation one to equation two yields(
−A AD2AT

0 AD2AT

)(
∆x
∆y

)
=

(
−AXS−1rc +AS−1rxs

−rb −AXS−1rc +AS−1rxs

)
D2AT∆y = −rb −AXS−1rc +AS−1rxs

∆s = −rc +AT∆y

∆x = −S−1rxs −XS−1∆s

(26)

where the expressions for ∆s and ∆x are obtained from the original
system (24).
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Solving the Linear System 34

Most implementations of primal dual interior point solvers are based
on formulations like (26), which are called the normal equations.

General purpose Choleskey software can be applied to AD2AT but
modi�cations are needed because the matrix may be ill-conditioned
or singular.
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Complexity 35

All path-following methods have been shown to be polynomial time
algorithms (where simplex is worst case exponential). Each step
requires a full matrix inversion, a rather expensive task for a large
scale problem. However the number of steps are smaller in interior
point methods than in the simplex method.
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Advantages and Disadvantages 36

Compared to the simplex method

+ Better worst case complexity.

+ Easier to program.

- Cannot take advantage of warm start information as good.
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